Researchers identify cellular/molecular defect in T cell regulatory pathway

June 10, 2017

Current therapies for treating autoimmune disease and controlling rejection of transplants result in nonspecific suppression of normal function of the immune system. In contrast to these existing approaches (which systemically suppress the immune system), therapies based on this new research are designed to selectively suppress immune responses to self-antigens without damaging the body's normal anti-infection and anti-tumor responses.

Another major advantage of the new therapy over antigen-specific strategies is that therapies can be developed independent of the knowledge of any particular self-antigens involved.

In addition, now that scientists have a greater understanding of the defect that leads to certain autoimmune diseases, assays could be developed to detect that defect, giving doctors an opportunity for early diagnosis, early treatment and eventually prevention of autoimmune diseases. That would be particularly important, because, for example, patients with Type 1 diabetes often don't learn they have the disease until significant damage has been done. Assays might also be used to check the status of organ transplants, to control chronic rejection.

"This scientific breakthrough could lead to a wide range of therapeutic and diagnostic possibilities," says Sara Gusik, a representative from Columbia Technology Ventures, the technology transfer office of Columbia University, which has already filed patent applications on this work. Some of the advances could include vaccines or biotechnology agents for early diagnosis, early treatment, leading to possible cure and prevention of a variety of autoimmune diseases, including Type 1 diabetes, multiple sclerosis, thyroid disease, rheumatoid arthritis, and others. The researchers envision that the new conceptual framework of the "avidity model" may also lead to solutions that address chronic graft rejection in organ transplantation.

SOURCE The Journal of Clinical Investigation